Nvidia NIM
https://docs.api.nvidia.com/nim/reference/
tip
We support ALL Nvidia NIM models, just set model=nvidia_nim/<any-model-on-nvidia_nim>
as a prefix when sending litellm requests
API Key
# env variable
os.environ['NVIDIA_NIM_API_KEY']
Sample Usage
from litellm import completion
import os
os.environ['NVIDIA_NIM_API_KEY'] = ""
response = completion(
model="nvidia_nim/meta/llama3-70b-instruct",
messages=[
{
"role": "user",
"content": "What's the weather like in Boston today in Fahrenheit?",
}
],
temperature=0.2, # optional
top_p=0.9, # optional
frequency_penalty=0.1, # optional
presence_penalty=0.1, # optional
max_tokens=10, # optional
stop=["\n\n"], # optional
)
print(response)
Sample Usage - Streaming
from litellm import completion
import os
os.environ['NVIDIA_NIM_API_KEY'] = ""
response = completion(
model="nvidia_nim/meta/llama3-70b-instruct",
messages=[
{
"role": "user",
"content": "What's the weather like in Boston today in Fahrenheit?",
}
],
stream=True,
temperature=0.2, # optional
top_p=0.9, # optional
frequency_penalty=0.1, # optional
presence_penalty=0.1, # optional
max_tokens=10, # optional
stop=["\n\n"], # optional
)
for chunk in response:
print(chunk)
Usage - embedding
import litellm
import os
response = litellm.embedding(
model="nvidia_nim/nvidia/nv-embedqa-e5-v5", # add `nvidia_nim/` prefix to model so litellm knows to route to Nvidia NIM
input=["good morning from litellm"],
encoding_format = "float",
user_id = "user-1234",
# Nvidia NIM Specific Parameters
input_type = "passage", # Optional
truncate = "NONE" # Optional
)
print(response)
Usage - LiteLLM Proxy Server
Here's how to call an Nvidia NIM Endpoint with the LiteLLM Proxy Server
Modify the config.yaml
model_list:
- model_name: my-model
litellm_params:
model: nvidia_nim/<your-model-name> # add nvidia_nim/ prefix to route as Nvidia NIM provider
api_key: api-key # api key to send your model
Start the proxy
$ litellm --config /path/to/config.yaml
Send Request to LiteLLM Proxy Server
- OpenAI Python v1.0.0+
- curl
import openai
client = openai.OpenAI(
api_key="sk-1234", # pass litellm proxy key, if you're using virtual keys
base_url="http://0.0.0.0:4000" # litellm-proxy-base url
)
response = client.chat.completions.create(
model="my-model",
messages = [
{
"role": "user",
"content": "what llm are you"
}
],
)
print(response)curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
"model": "my-model",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
}'
Supported Models - 💥 ALL Nvidia NIM Models Supported!
We support ALL nvidia_nim
models, just set nvidia_nim/
as a prefix when sending completion requests
Model Name | Function Call |
---|---|
nvidia/nemotron-4-340b-reward | completion(model="nvidia_nim/nvidia/nemotron-4-340b-reward", messages) |
01-ai/yi-large | completion(model="nvidia_nim/01-ai/yi-large", messages) |
aisingapore/sea-lion-7b-instruct | completion(model="nvidia_nim/aisingapore/sea-lion-7b-instruct", messages) |
databricks/dbrx-instruct | completion(model="nvidia_nim/databricks/dbrx-instruct", messages) |
google/gemma-7b | completion(model="nvidia_nim/google/gemma-7b", messages) |
google/gemma-2b | completion(model="nvidia_nim/google/gemma-2b", messages) |
google/codegemma-1.1-7b | completion(model="nvidia_nim/google/codegemma-1.1-7b", messages) |
google/codegemma-7b | completion(model="nvidia_nim/google/codegemma-7b", messages) |
google/recurrentgemma-2b | completion(model="nvidia_nim/google/recurrentgemma-2b", messages) |
ibm/granite-34b-code-instruct | completion(model="nvidia_nim/ibm/granite-34b-code-instruct", messages) |
ibm/granite-8b-code-instruct | completion(model="nvidia_nim/ibm/granite-8b-code-instruct", messages) |
mediatek/breeze-7b-instruct | completion(model="nvidia_nim/mediatek/breeze-7b-instruct", messages) |
meta/codellama-70b | completion(model="nvidia_nim/meta/codellama-70b", messages) |
meta/llama2-70b | completion(model="nvidia_nim/meta/llama2-70b", messages) |
meta/llama3-8b | completion(model="nvidia_nim/meta/llama3-8b", messages) |
meta/llama3-70b | completion(model="nvidia_nim/meta/llama3-70b", messages) |
microsoft/phi-3-medium-4k-instruct | completion(model="nvidia_nim/microsoft/phi-3-medium-4k-instruct", messages) |
microsoft/phi-3-mini-128k-instruct | completion(model="nvidia_nim/microsoft/phi-3-mini-128k-instruct", messages) |
microsoft/phi-3-mini-4k-instruct | completion(model="nvidia_nim/microsoft/phi-3-mini-4k-instruct", messages) |
microsoft/phi-3-small-128k-instruct | completion(model="nvidia_nim/microsoft/phi-3-small-128k-instruct", messages) |
microsoft/phi-3-small-8k-instruct | completion(model="nvidia_nim/microsoft/phi-3-small-8k-instruct", messages) |
mistralai/codestral-22b-instruct-v0.1 | completion(model="nvidia_nim/mistralai/codestral-22b-instruct-v0.1", messages) |
mistralai/mistral-7b-instruct | completion(model="nvidia_nim/mistralai/mistral-7b-instruct", messages) |
mistralai/mistral-7b-instruct-v0.3 | completion(model="nvidia_nim/mistralai/mistral-7b-instruct-v0.3", messages) |
mistralai/mixtral-8x7b-instruct | completion(model="nvidia_nim/mistralai/mixtral-8x7b-instruct", messages) |
mistralai/mixtral-8x22b-instruct | completion(model="nvidia_nim/mistralai/mixtral-8x22b-instruct", messages) |
mistralai/mistral-large | completion(model="nvidia_nim/mistralai/mistral-large", messages) |
nvidia/nemotron-4-340b-instruct | completion(model="nvidia_nim/nvidia/nemotron-4-340b-instruct", messages) |
seallms/seallm-7b-v2.5 | completion(model="nvidia_nim/seallms/seallm-7b-v2.5", messages) |
snowflake/arctic | completion(model="nvidia_nim/snowflake/arctic", messages) |
upstage/solar-10.7b-instruct | completion(model="nvidia_nim/upstage/solar-10.7b-instruct", messages) |